ЭЛЕКТРОТЕХНИКА

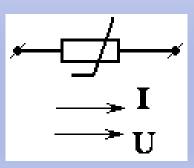
НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

Нелинейные электрические цепи постоянного тока – цепи, содержащие нелинейные элементы (H3), нелинейные сопротивления (HC), нелинейные индуктивности или нелинейные емкости.

При помощи нелинейных элементов можно:

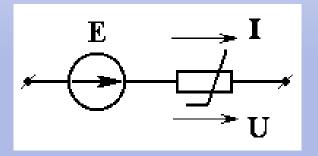
- **Выпрямлять** переменный ток.
- **С**табилизировать напряжение и ток.
- Преобразовывать форму сигналов.
- Генерировать и усиливать сигналы различной формы.
- Производить вычислительные операции и т.п.

Параметры линейных элементов:


$$R = u / i$$
,
 $L = \Psi / i$,
 $C = q / u$

- постоянные величины и однозначно определяют эти элементы.
- Параметры НЭ *непостоянны*, часто определяются экспериментально и задаются в виде графиков, таблиц, аналитически или другими способами.
 - Нелинейные сопротивления в отличие от линейных сопротивлений обладают нелинейными вольтамперными характеристиками (ВАХ – это зависимость тока, протекающего через сопротивление, от напряжения на нем).

Классификация резистивных элементов


Пассивные элементы

- ВАХ проходит через начало координат.
- В ПЭ происходят необратимые преобразования электрической энергии в другие виды.

Активные элементы

- ВАХ не проходит через начало координат.
- Схема замещения содержит источник ЭДС (или тока).

По расположению BAX пассивного элемента относительно начало координат они делятся на:

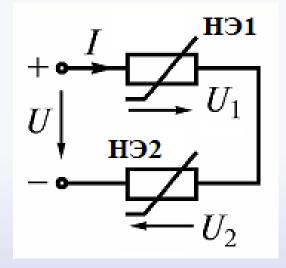
Симметричные	Несимметричные
Лампы накаливания	Полупроводниковые диоды
Не зависят от направления тока. С увеличением протекающего тока сопротивление их уменьшается	Зависят от направления тока и способны пропускать ток только в одном, проводящем, направлении.
Вольтамперные : <u>симметричные</u>	характеристики: <u>несимметричные</u> [[A] ↑
0 U[B] 0 U[B]	

Нелинейные элементы могут быть подразделены на две большие группы:

Неуправляемые элементы	Управляемые элементы
Есть только основная цепь	Кроме основной цепи, есть вспомогательная (управляющая) цепь. Воздействуя на ток или напряжение которой можно менять ВАХ основной цепи.
ВАХ изображается одной кривой	-изображается семейством кривых
Входят: диод, лампа накаливания, полупроводниковые выпрямители	- транзистор, тиристор, магнитный усилитель и др.
Общее свойство: односторонняя проводимость – при одной полярности напряжения их сопротивление близко к нулю, при противоположной – очень большое или бесконечно большое.	- у них управляющий параметр – электрический (напряжение или ток)

Графический метод расчета

нелинейной цепи постоянного тока с резистивными элементами.


Задача анализа нелинейной цепи

- состоит в определении токов и напряжений на участках нелинейной цепи при заданных ВАХ нелинейных элементов, сопротивлениях линейных элементов и источников ЭДС (или тока).

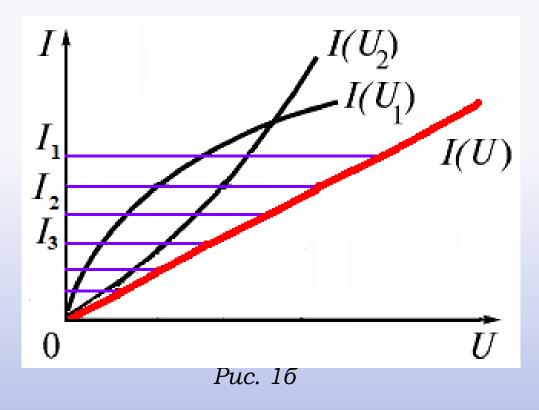
<u>Расчет нелинейной цепи при последовательном</u> соединении пассивных нелинейных элементов.

На рис. 1а показано последовательное соединение двух нелинейных элементов НЭ1 и НЭ2,

характеристики которых представлены на рис. 1б.

Puc. 1a

Метод сводится к графическому решению уравнения, составленного по 2-му закону Кирхгофа для двух последовательно соединенных НЭ1 и НЭ2.


$$\boldsymbol{U} = \boldsymbol{U}_1 + \boldsymbol{U}_2$$

где U – общее напряжение на элементах; $U_1;\ U_2$ – напряжение на соответствующих элементах.

Для решения задачи ВАХ нелинейных элементов строятся в одной системе координат. При последовательном соединении в НЭ протекает один и тот же ток.

<u>Поэтому:</u>

- 1. Задаемся несколькими значениями тока (5-6 значений): $I_1,\ I_2,\ I_3$ и т.д.
- 2. Проводим на графике линии параллельные оси абсцисс.

- 3. Суммируем соответствующие значения напряжений на НЭ1 и НЭ2.
- 4. Соединяя кривой полученные точки, строим эквивалентную (результирующую) ВАХ I(U) цепи.

- 5. На суммарной ВАХ по заданному напряжению U находим ток I.
- 6. По ВАХ отдельных нелинейных элементов определяем напряжения \mathbf{U}_1 и \mathbf{U}_2 на этих элементах.

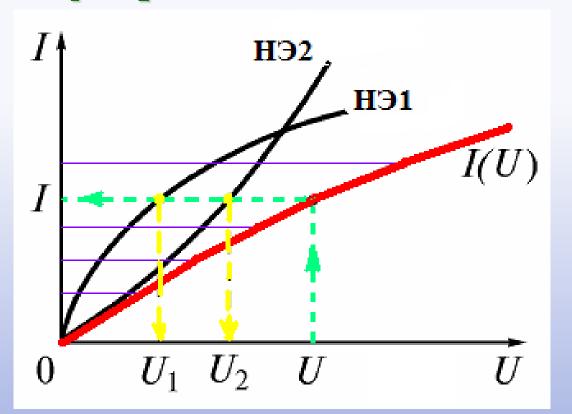


Рис. 1в

Такие же построения для расчета тока и напряжений можно выполнить, если один из элементов линейный. Аналогично решается задача расчета цепи, состоящей из трех или более последовательно соединенных нелинейных элементов.

Расчет нелинейной цепи при параллельном соединении пассивных нелинейных элементов.

На рис. 2а показаны соединенные параллельно два нелинейных элемента НЭ1 и НЭ2, ВАХ которых $I_1(U)$ и $I_2(U)$ заданы на рис. 2.6.

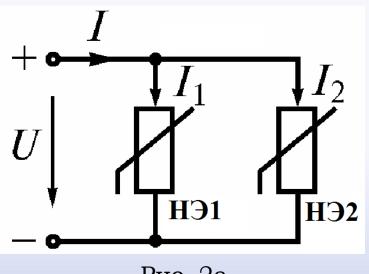
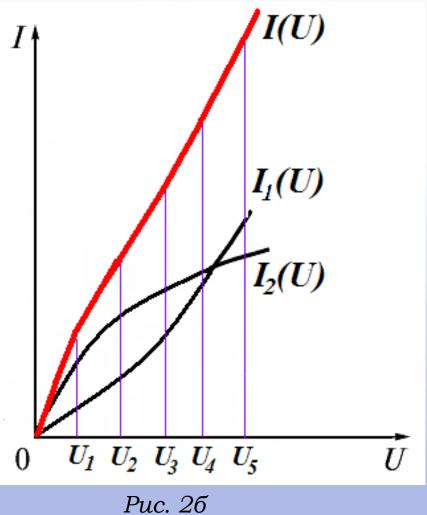


Рис. 2а

Метод сводится к графическому решению уравнения, составленного по 1-му закону Кирхгофа для двух параллельно соединенных нелинейных элементов.

$$I = I_1 + I_2$$


где I – общий ток;

 I_1 ; I_2 – токи в соответствующих ветвях.

Для решения задачи ВАХ нелинейных элементов строятся в одной системе координат. При параллельном соединении $U_1 = U_2 = U$.

Поэтому:

- 1. Задаемся несколькими значениями напряжений (5-6 значений): U_1 , U_2 , U_3 и Т.Д.
- 2. Проводим на графике линии параллельные оси ординат.
- 3. Суммируем соответствующие значения токов на НЭ1 и НЭ2.

4. Соединяя кривой полученные точки, строим ВАХ *I(U)* цепи.

5. На суммарной ВАХ по известному напряжению U находят ток I.

6. По ВАХ отдельных нелинейных элементов определяем токи в ветвях I_1 и I_2 .

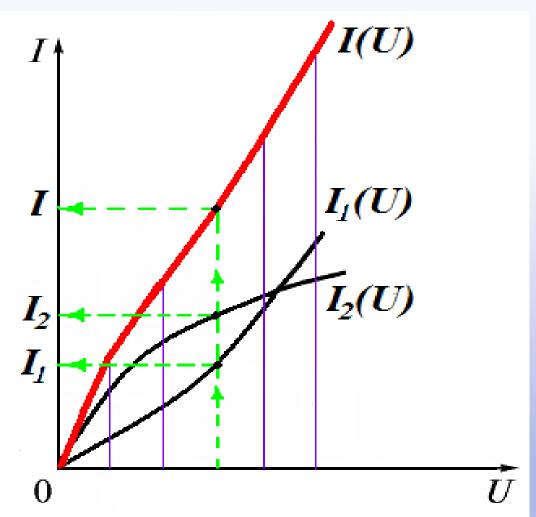
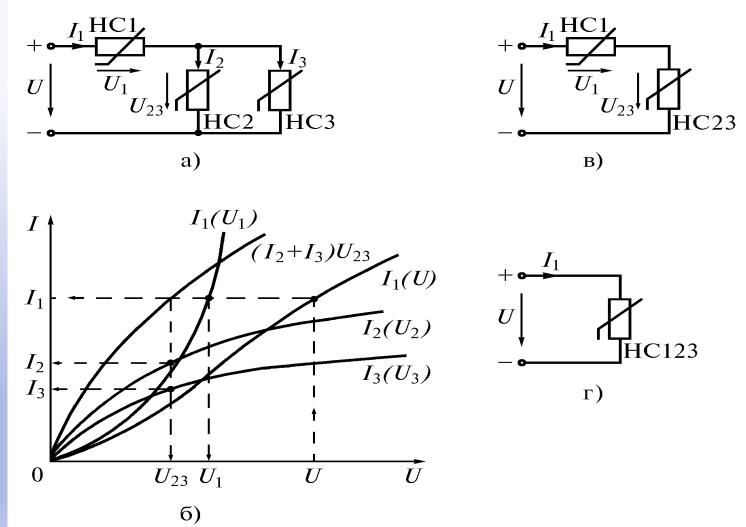



Рис. 2в

Таким же способом можно рассчитать электрическую цепь с любым числом параллельно включенных нелинейных элементов.

<u>Расчет нелинейной цепи при смешанном</u> соединении пассивных нелинейных элементов.

Расчет сводится к двум предыдущим случаям (рис.3).

